Spannungsverteilungen im Mauerwerk
Druckspannungen werden immer in Form einer blockförmigen Spannungsverteilung beschrieben, Biegespannungen z. B. infolge eingeprägter Momente in der Regel mit dreieckiger Verteilung. Werden Biegemomente durch ausmittige Normalkräfte beschrieben, dann lässt sich auch hier die Druckspannung linear-elastisch genähert als dreieckig ansetzen.
Im Eurocode 6 kann zur weiteren Vereinfachung ideal plastisches Verhalten unterstellt und die Verteilung „stress-block“ verwendet werden, die eine gleiche Lage der Resultierenden und damit gleiche Momente im Querschnitt unterstellt. Diese Annahme beinhaltet aber gleichzeitig die Voraussetzung der Möglichkeit von Spannungsumlagerungen, da bei gleicher Kraft N aus der dreieckigen Spannungsverteilung eine um 33 % höhere Randspannung resultiert. Aus diesem Grund darf bei der Spannungsverteilung nach dem Spannungsblock keinerlei Spannungserhöhung wegen lokaler Einwirkung argumentiert werden.
Stress-Block | Dreiecksverteilung | „reale“ Spannungsverteilung |
Scherspannungen in der Wand weisen an den Enden Spannungsspitzen (Ansatz DIN) auf – werden aber als linear verteilt (Rechteckverteilung) angenommen. Schubspannungen, z. B. am Einzelstein, verlaufen zumeist parabelförmig, auch hier wird eine vereinfachte Rechteckverteilung angesetzt.
Scherspannungen | Schubspannungen |
1 „reale“ Spannungsverteilung
2 Stress-block
Zusammenwirken Wand und Decke
In Bauwerken kommt den Decken eine entscheidende Wirkung zur Verteilung von Kräften und für den Zusammenhalt der Wandstruktur zu. Die Deckenhorizonte halten die Wände in den Geschoßebenen fest und reduzieren so die Knicklänge auf Geschoßhöhe. Wesentlich ist eine Unterscheidung in schubsteife und schubweiche sowie in biegesteife und biegeweiche Deckensysteme. Biegesteife Deckensysteme ermöglichen einerseits eine Querverteilung von Einzellasten und eine Vergleichmäßigung der Auflagerkräfte, andererseits eine gewisse Rahmenwirkung der Wand-Decken-Struktur. Biegeweiche Decken (z. B. FT-Rippendecken oder Holzbalkendecken) besitzen diese Eigenschaften nur sehr beschränkt.
Schubsteife Deckensysteme sind nicht automatisch biegesteif, jedoch biegesteife Decken praktisch immer schubsteif. Als schubsteif oder starr wird nach ÖNORM EN 1998-1 eine Scheibe dann betrachtet, wenn ihre in der Erdbeben-Bemessungssituation ermittelte Horizontalverschiebung, berechnet an einem Modell unter Berücksichtigung der tatsächlichen Nachgiebigkeit in der Ebene, nirgendwo die unter Annahme einer starren Scheibe ermittelten absoluten Horizontalverschiebungen um mehr als 10 % übersteigt.
Durch schubsteife Deckensysteme wird eine gemeinsame Verformung des Gesamtbauwerkes erzwungen und einwirkende Horizontalkräfte werden entsprechend verteilt. Auch der Zusammenschluss der Wände untereinander wird dadurch verbessert. Gleichzeitig unterbrechen die Decken jedoch den gleichmäßigen Kraftfluss in der Wand und verursachen durch eingeprägte Momente zusätzliche Beanspruchungen im Mauerwerk.
Wand-Decken-Knoten
Aus der Ablastung der Geschoßlasten in die unterstützenden Wände kommt es zu einer Wechselwirkung Wand-Decke alleine schon bei nicht zentrischer Kraftweiterleitung (bei nicht durchlaufenden Deckenrosten) bzw. durch die aus Verformungen der Decke eingeprägten Momente. Gleichzeitig besitzt eine biegesteife Decke oder ein entsprechend biegesteifer Deckenrost den Vorteil einer Verteilung der angreifenden Lasten bzw. der daraus resultierenden Druckspannungen. Die rechnerische Erfassung erfolgt mittels vereinfachter Modelle (vereinfachten Modellvorstellungen als Geschoßrahmensysteme), die entweder
- vom Ansatz eines steifen Rahmens aus Wänden und Decke mit einer vollständigen Einspannung der Deckenplatte in der Außenwand und der Mittelmauer ausgehen oder aber
- von einer praktisch vollständig gelenkigen Lagerung der Decke auf der Außenwand bei gleichzeitig steifer Festhaltung in der Mittelmauer.
Letzterer Ansatz berücksichtigt die Möglichkeit einer randnahen Auflagerung von Decken bzw. die Wahl von Deckensystemen, die für eine volle Einspannung in der Wand nicht geeignet sind (z. B. Rippendeckensysteme). Eine Volleinspannung in Mauerwerk, welches ja keine Zugkräfte aufnehmen kann, setzt naturgemäß ausreichend große, aktivierbare Normalkräfte in der auflastenden Wand voraus. Zu beachten ist außerdem, dass für den Steifigkeitsansatz der Wand die tatsächliche Steifigkeit unter Berücksichtigung der Wandöffnungen anzusetzen ist. Tatsächlich kommt es durch die Ausbildung von gedämmten Rosten zum Zwecke einer Vermeidung von Wärmebrücken auch bei Stahlbetonplatten und stark belasteten Wänden oft nur zu einer Teileinspannung.
Die Momentenverteilung im Wand-Decken-Knoten beeinflusst auch die anzusetzende Lastexzentrizität in Wandmitte und geht somit auch dort in die Dimensionierung der Wände ein.
Wandkopf | Wandmitte | Wandfuß |
Zwischen Decke und den angrenzenden Mauersteinen sollte als ausgleichende Zwischenschicht ein Mörtelausgleich hergestellt und jeweils eine Trennlage (z. B. Bitumendachbahn) zur Entkopplung des unterschiedlichen Verformungsverhaltens der beiden Baustoffe eingelegt werden. Die Kombination aus Mörtelabgleich und Trennlage hat dabei verschiedene positive Effekte auf die Tragsicherheit und Rissbildung im Anschlußbereich:
- Vermeidung einer Verzahnung zwischen Decke und Mauerwerk (Einfließen des Frischbetons in die Lochungen der Ziegel wird verhindert)
- Möglichkeit zur Längenänderung der Decken (Schwinden, Temperatur) bei gleichzeitiger Minimierung des Eintrags von rissauslösenden Schubkräften in das Mauerwerk und ausreichender Reibungsaktivierung zum Abtrag kurzzeitig wirkender Horizontallasten (Wind, Erdbeben)
- Abbau von lokalen Spannungsspitzen durch örtliche Plastifizierung der Trenn- und Ausgleichsschichten
Einen bei höheren Normalkräften sehr positiven Effekt haben tragende Roststeine. Sie beeinflussen das Tragverhalten durch eine Stützung der sich an der Außenseite verdrehenden Tragwände gegeneinander und bilden damit einen zusätzlichen Lastweiterleitungsquerschnitt. Damit wird die Beanspruchung der Wand günstiger verteilt und reduziert. Diese Knotenform ist in ÖNORM EN 1996-1-1 derzeit noch nicht erfasst.
Für alle möglichen Nachweisorte – Wandkopf, Wandmitte und Wandfuß – sind die zusätzlichen Einflüsse aus ungewollten Effekten, aus Effekten II. Ordnung und natürlich die Auswirkung von Horizontalkräften (z. B. Wind) auf die Lage des Angriffpunktes der Normalkraft und damit auf die effektive Spannungsverteilung zu ermitteln. Die Berücksichtigung erfolgt über Abminderungsfaktoren Φ.
Die vertikal lastabtragende Wand
Wichtig für eine ordnungsgemäße Lastabtragung ist jedoch auch die Einhaltung der Verbandsregeln und Mindestüberbindemaße. Im Bereich von Teilflächenbeanspruchungen ist sonst keine gesicherte Lastausbreitung möglich. Eine horizontale Kraftabtragung ist ohne ordnungsgemäßen Verband ebenfalls nicht gegeben.
unzulässige Vermauerung ohne Verband | ordnungsgemäßer Mauerwerksverband |
Horizontalkraftweiterleitung Decken auf Wand
So wie für die Abtragung der vertikalen Kräfte das Zusammenwirken von Wänden und Decken einen wesentlichen Einfluss auf die Beanspruchung in den Bauteilen hat, ist bei der Abtragung von horizontalen Kräften ein Zusammenwirken von Decken und Wänden erforderlich. Ohne die funktionierende Kraftableitung über Wandscheiben (alternativ auch über Treppenhauskerne) ist im Mauerwerksbau eine räumliche Stabilität des Bauwerks nicht zu gewährleisten. Horizontale Krafteinwirkungen auf Bauwerke und somit auch auf einzelne Bauteile entstehen durch:
- Windeinwirkung (Druck und Sog)
- Trägheitskräfte zufolge Erdbeben
- Erddruck / evtl. Wasserdruck
- Kraftanteile zufolge von Imperfektionen in der Baustruktur (Lotabweichungen, Krümmungen usw.)
Windkräfte wirken praktisch statisch auf die Außenhülle während Erdbebenkräfte dynamisch die Bauwerksmasse erregen. Die entsprechenden Ansätze sind den Belastungsnormen zu entnehmen.
Es ist zusätzlich zu unterscheiden, welche Deckensysteme eingebaut sind. Angreifende Horizontalkräfte werden entweder über schubsteife Decken auf die „stützenden“ Wandscheiben verteilt oder direkt, entsprechend den Lasteinflussflächen den abtragenden Wänden zugewiesen. Abhängig davon sind die Umlagerungsmöglichkeiten ebenfalls unterschiedlich. Schubsteife Decken wirken in der Gebäudestruktur jedenfalls günstiger und sind besonders in Erdbebengebieten heute eine technische Notwendigkeit. Außerdem besitzen sie in der Regel auch eine höhere Biegesteifigkeit, die im Zusammenwirken mit den Wänden eine günstigere Beanspruchung in den aussteifenden Wandscheiben hervorruft.
Einen maßgeblichen Einfluss hat die schon angesprochene Halterung der Wandenden – die Behinderung der Verdrehung. In der Realität ist eine solche immer gegeben, wobei die Größe der Behinderung von der Steifigkeit der Decken aber auch von der Position der Wandelemente zueinander beeinflusst ist. Für lange Wände ist die Deckenhalterung eher unmaßgeblich, für kurze Wände jedoch bedeutsam.
Bei einer sehr steifen Halterung ist die Exzentrizität spiegelverkehrt an den beiden Scheibenkanten oben und unten. Die tatsächliche Verteilung ist jedoch vom Verhältnis der Plattensteifigkeit der Decke = Halterung und der Geometrie der Wandscheibe (Biegesteifigkeit) abhängig.
Um die Größe der Behinderung einordnen zu können, ist bei Stahlbetondecken zur Steifigkeitseinschätzung eine Deckenfeldbreite von max. 2x1/10 der zuordenbaren Deckenspannweite ansetzbar. Gleichzeitig ist es sinnvoll, für die Ermittlung der Wandsteifigkeit die rechnerische Länge mit der maximal 1,5-fachen Wandhöhe zu beschränken.
© 2018
Der Inhalt dieser Fachbuchauszüge
ist urheberrechtlich geschützt.
zum Buch